Copied to
clipboard

G = C1222C2order 288 = 25·32

2nd semidirect product of C122 and C2 acting faithfully

metabelian, supersoluble, monomial

Aliases: C1222C2, C62.220C23, (C4×C12)⋊5S3, C423(C3⋊S3), (C2×C12).358D6, C33(C423S3), C6.96(C4○D12), C6.Dic61C2, (C6×C12).288C22, C329(C422C2), C6.11D12.1C2, C2.8(C12.59D6), (C3×C6).112(C4○D4), (C2×C6).237(C22×S3), C22.38(C22×C3⋊S3), (C22×C3⋊S3).39C22, (C2×C3⋊Dic3).77C22, (C2×C4).66(C2×C3⋊S3), SmallGroup(288,733)

Series: Derived Chief Lower central Upper central

C1C62 — C1222C2
C1C3C32C3×C6C62C22×C3⋊S3C6.11D12 — C1222C2
C32C62 — C1222C2
C1C22C42

Generators and relations for C1222C2
 G = < a,b,c | a12=b12=c2=1, ab=ba, cac=a5b6, cbc=a6b-1 >

Subgroups: 684 in 180 conjugacy classes, 65 normal (8 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, C2×C4, C23, C32, Dic3, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C3⋊S3, C3×C6, C2×Dic3, C2×C12, C22×S3, C422C2, C3⋊Dic3, C3×C12, C2×C3⋊S3, C62, Dic3⋊C4, D6⋊C4, C4×C12, C2×C3⋊Dic3, C6×C12, C22×C3⋊S3, C423S3, C6.Dic6, C6.11D12, C122, C1222C2
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C3⋊S3, C22×S3, C422C2, C2×C3⋊S3, C4○D12, C22×C3⋊S3, C423S3, C12.59D6, C1222C2

Smallest permutation representation of C1222C2
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 108 52 117 32 70 44 14 135 121 78 85)(2 97 53 118 33 71 45 15 136 122 79 86)(3 98 54 119 34 72 46 16 137 123 80 87)(4 99 55 120 35 61 47 17 138 124 81 88)(5 100 56 109 36 62 48 18 139 125 82 89)(6 101 57 110 25 63 37 19 140 126 83 90)(7 102 58 111 26 64 38 20 141 127 84 91)(8 103 59 112 27 65 39 21 142 128 73 92)(9 104 60 113 28 66 40 22 143 129 74 93)(10 105 49 114 29 67 41 23 144 130 75 94)(11 106 50 115 30 68 42 24 133 131 76 95)(12 107 51 116 31 69 43 13 134 132 77 96)
(2 37)(3 11)(4 47)(5 9)(6 45)(8 43)(10 41)(12 39)(13 86)(14 64)(15 96)(16 62)(17 94)(18 72)(19 92)(20 70)(21 90)(22 68)(23 88)(24 66)(25 53)(26 141)(27 51)(28 139)(29 49)(30 137)(31 59)(32 135)(33 57)(34 133)(35 55)(36 143)(40 48)(42 46)(50 80)(52 78)(54 76)(56 74)(58 84)(60 82)(61 105)(63 103)(65 101)(67 99)(69 97)(71 107)(73 134)(75 144)(77 142)(79 140)(81 138)(83 136)(85 102)(87 100)(89 98)(91 108)(93 106)(95 104)(109 123)(110 112)(111 121)(113 131)(114 120)(115 129)(116 118)(117 127)(119 125)(122 132)(124 130)(126 128)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,108,52,117,32,70,44,14,135,121,78,85)(2,97,53,118,33,71,45,15,136,122,79,86)(3,98,54,119,34,72,46,16,137,123,80,87)(4,99,55,120,35,61,47,17,138,124,81,88)(5,100,56,109,36,62,48,18,139,125,82,89)(6,101,57,110,25,63,37,19,140,126,83,90)(7,102,58,111,26,64,38,20,141,127,84,91)(8,103,59,112,27,65,39,21,142,128,73,92)(9,104,60,113,28,66,40,22,143,129,74,93)(10,105,49,114,29,67,41,23,144,130,75,94)(11,106,50,115,30,68,42,24,133,131,76,95)(12,107,51,116,31,69,43,13,134,132,77,96), (2,37)(3,11)(4,47)(5,9)(6,45)(8,43)(10,41)(12,39)(13,86)(14,64)(15,96)(16,62)(17,94)(18,72)(19,92)(20,70)(21,90)(22,68)(23,88)(24,66)(25,53)(26,141)(27,51)(28,139)(29,49)(30,137)(31,59)(32,135)(33,57)(34,133)(35,55)(36,143)(40,48)(42,46)(50,80)(52,78)(54,76)(56,74)(58,84)(60,82)(61,105)(63,103)(65,101)(67,99)(69,97)(71,107)(73,134)(75,144)(77,142)(79,140)(81,138)(83,136)(85,102)(87,100)(89,98)(91,108)(93,106)(95,104)(109,123)(110,112)(111,121)(113,131)(114,120)(115,129)(116,118)(117,127)(119,125)(122,132)(124,130)(126,128)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,108,52,117,32,70,44,14,135,121,78,85)(2,97,53,118,33,71,45,15,136,122,79,86)(3,98,54,119,34,72,46,16,137,123,80,87)(4,99,55,120,35,61,47,17,138,124,81,88)(5,100,56,109,36,62,48,18,139,125,82,89)(6,101,57,110,25,63,37,19,140,126,83,90)(7,102,58,111,26,64,38,20,141,127,84,91)(8,103,59,112,27,65,39,21,142,128,73,92)(9,104,60,113,28,66,40,22,143,129,74,93)(10,105,49,114,29,67,41,23,144,130,75,94)(11,106,50,115,30,68,42,24,133,131,76,95)(12,107,51,116,31,69,43,13,134,132,77,96), (2,37)(3,11)(4,47)(5,9)(6,45)(8,43)(10,41)(12,39)(13,86)(14,64)(15,96)(16,62)(17,94)(18,72)(19,92)(20,70)(21,90)(22,68)(23,88)(24,66)(25,53)(26,141)(27,51)(28,139)(29,49)(30,137)(31,59)(32,135)(33,57)(34,133)(35,55)(36,143)(40,48)(42,46)(50,80)(52,78)(54,76)(56,74)(58,84)(60,82)(61,105)(63,103)(65,101)(67,99)(69,97)(71,107)(73,134)(75,144)(77,142)(79,140)(81,138)(83,136)(85,102)(87,100)(89,98)(91,108)(93,106)(95,104)(109,123)(110,112)(111,121)(113,131)(114,120)(115,129)(116,118)(117,127)(119,125)(122,132)(124,130)(126,128) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,108,52,117,32,70,44,14,135,121,78,85),(2,97,53,118,33,71,45,15,136,122,79,86),(3,98,54,119,34,72,46,16,137,123,80,87),(4,99,55,120,35,61,47,17,138,124,81,88),(5,100,56,109,36,62,48,18,139,125,82,89),(6,101,57,110,25,63,37,19,140,126,83,90),(7,102,58,111,26,64,38,20,141,127,84,91),(8,103,59,112,27,65,39,21,142,128,73,92),(9,104,60,113,28,66,40,22,143,129,74,93),(10,105,49,114,29,67,41,23,144,130,75,94),(11,106,50,115,30,68,42,24,133,131,76,95),(12,107,51,116,31,69,43,13,134,132,77,96)], [(2,37),(3,11),(4,47),(5,9),(6,45),(8,43),(10,41),(12,39),(13,86),(14,64),(15,96),(16,62),(17,94),(18,72),(19,92),(20,70),(21,90),(22,68),(23,88),(24,66),(25,53),(26,141),(27,51),(28,139),(29,49),(30,137),(31,59),(32,135),(33,57),(34,133),(35,55),(36,143),(40,48),(42,46),(50,80),(52,78),(54,76),(56,74),(58,84),(60,82),(61,105),(63,103),(65,101),(67,99),(69,97),(71,107),(73,134),(75,144),(77,142),(79,140),(81,138),(83,136),(85,102),(87,100),(89,98),(91,108),(93,106),(95,104),(109,123),(110,112),(111,121),(113,131),(114,120),(115,129),(116,118),(117,127),(119,125),(122,132),(124,130),(126,128)]])

78 conjugacy classes

class 1 2A2B2C2D3A3B3C3D4A···4F4G4H4I6A···6L12A···12AV
order1222233334···44446···612···12
size11113622222···23636362···22···2

78 irreducible representations

dim11112222
type++++++
imageC1C2C2C2S3D6C4○D4C4○D12
kernelC1222C2C6.Dic6C6.11D12C122C4×C12C2×C12C3×C6C6
# reps1331412648

Matrix representation of C1222C2 in GL4(𝔽13) generated by

101000
3700
00114
0092
,
5800
5000
0033
00106
,
0100
1000
00121
0001
G:=sub<GL(4,GF(13))| [10,3,0,0,10,7,0,0,0,0,11,9,0,0,4,2],[5,5,0,0,8,0,0,0,0,0,3,10,0,0,3,6],[0,1,0,0,1,0,0,0,0,0,12,0,0,0,1,1] >;

C1222C2 in GAP, Magma, Sage, TeX

C_{12}^2\rtimes_2C_2
% in TeX

G:=Group("C12^2:2C2");
// GroupNames label

G:=SmallGroup(288,733);
// by ID

G=gap.SmallGroup(288,733);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,64,590,100,2693,9414]);
// Polycyclic

G:=Group<a,b,c|a^12=b^12=c^2=1,a*b=b*a,c*a*c=a^5*b^6,c*b*c=a^6*b^-1>;
// generators/relations

׿
×
𝔽